160=300-10(x^2+10)

Simple and best practice solution for 160=300-10(x^2+10) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 160=300-10(x^2+10) equation:



160=300-10(x^2+10)
We move all terms to the left:
160-(300-10(x^2+10))=0
We calculate terms in parentheses: -(300-10(x^2+10)), so:
300-10(x^2+10)
determiningTheFunctionDomain -10(x^2+10)+300
We multiply parentheses
-10x^2-100+300
We add all the numbers together, and all the variables
-10x^2+200
Back to the equation:
-(-10x^2+200)
We get rid of parentheses
10x^2-200+160=0
We add all the numbers together, and all the variables
10x^2-40=0
a = 10; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·10·(-40)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1600}=40$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-40}{2*10}=\frac{-40}{20} =-2 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+40}{2*10}=\frac{40}{20} =2 $

See similar equations:

| x-5×8=72 | | a-3+2=3 | | 24y^2+4=0 | | 5x×8=72 | | 8x+-1-9=x | | 50=300-10(x^2+10) | | 4(2x-5)=2(x-5) | | 7(5y-2)-(6y+2)= | | 1/4x+7/16=3/8 | | 4x^2+x-1=2 | | 16=8(r-6) | | -200=30j-5)5j+20 | | 2x+1+18=90 | | p=2L+2W;L=91,W=92 | | -2p+(-3p+4)=-20 | | 4^(x+3)=5x | | p=2L+2WL=91W=92 | | x(3x+4)=440 | | 6s-11=-2s | | 4n-5=39 | | 4^x+3=5x | | 4x-3(-2x+)=-2 | | 2(2+3v)=34 | | 3/8(x-6)=4/5(x-6) | | 108=2x²+6x | | -11=d/3-13 | | -9=5(-3k-2)+1 | | 108=2x²=6x | | 3/8x-18/8=4/5x-24/5 | | 3(1-2p)+p=-27 | | 4(9x+2)=15 | | 2(5v+2)=44 |

Equations solver categories